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Acoustic resonances of simple three-dimensional finite-length structures in an infinitely
long cylindrical pipe are investigated numerically by solving an eigenvalue problem.
To avoid unphysical reflections at the finite grid boundaries placed in the uniform
cross-sections of the pipe, perfectly matched layer absorbing boundary conditions are
applied in the form of the complex scaling method of atomic and molecular physics.
Examples of the structures investigated are sound-hard spheres, cylinders, cavities
and closed side branches. Several truly trapped modes with zero radiation loss are
identified for frequencies below the first cutoff frequency of the pipe. Such trapped
modes can be excited aerodynamically by coherent vortices if the frequency of the shed
vortices is close to a resonant frequency. Furthermore, numerical evidence is presented
for the existence of isolated embedded trapped modes for annular cavities above the
first cutoff frequency and for closed side branches below the first cutoff frequency.
As applications of engineering interest, the acoustic resonances are computed for a
ball-type valve and around a simple model of a high-speed train in an infinitely long
tunnel.

1. Introduction
In their survey paper Parker & Stoneman (1989) demonstrated that vortex shedding

can be altered and enhanced dramatically by acoustic resonances in many engineering
problems of practical importance. When the vortex shedding frequency is near an
acoustic resonant frequency the former may lock on to the resonant frequency and
the acoustic resonance may control the shedding process in a similar way to that
observed with mechanical oscillations of bluff bodies in a flow, cf. Bearman (1984).
In the locked-on state even fully turbulent flows show highly coherent vortices and
the corresponding high-amplitude oscillations often cause damagingly high vibrations
and/or unbearably loud noise. These high-amplitude oscillations can be controlled by
either suppressing the vortex shedding or changing the geometry of the resonator. The
former is more effective but not always possible. In this paper we are concerned with
predicting dangerous resonances with low radiation damping, i.e. high quality factor
Q, for a particular geometry of unbounded resonators. In the original experimental
investigation of Parker (1966) the source exciting these acoustic resonances were von-
Kármán-like coherent vortices generated in the self-excited wake behind a blunt-edged
plate. However, similar lock-on effects were observed in finite-length side branches
and pipes, see Dequand, Hulshoff & Hirschberg (2003) or Rockwell et al. (2003),
where Rossiter-like feedback modes of impinging shear layers provide the source of
excitation.
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Figure 1. Frequency f ∗ versus flow velocity U ∗ for Strouhal sources S and acoustic
resonances a (schematically).

Vortex shedding is a strictly hydrodynamical oscillation and usually follows a
constant Strouhal number law, i.e. the shedding frequency f ∗ increases approximately
linearly with flow velocity U ∗. On the other hand the frequency of acoustic resonances
for a given geometry is approximately constant, at least at low Mach numbers, as
sketched in figure 1. Without acoustic resonance the frequency of the shed vortices
follows the constant Strouhal lines for purely hydrodynamic oscillations denoted by
S. For wakes only a single Strouhal line, for example S1, is excited. For impinging
shear layers, such as flows over cavities, several Strouhal lines are possible due to a
feedback mechanism, see Rockwell & Naudascher (1979). As soon as the frequency
of a Strouhal source line is close to an acoustic resonant frequency line, denoted by a,
lock-on may occur with corresponding enhancement of the oscillation if the acoustic
resonance has low damping. It is even possible that more than one resonance may be
excited by a single Strouhal source, or that several Strouhal sources may lock on to a
single resonance. Lock-on is a complicated nonlinear process which is not the subject
of this investigation. But knowledge of the acoustic resonant frequencies gives us an
idea of at which frequencies lock-on and possibly dangerously high oscillations might
be expected.

Parker (1966) first observed acoustic resonances for a finite-length plate placed
symmetrically between parallel duct walls and found that at the resonances the
pressure decayed exponentially in the axial direction away from the plate. This
enabled Parker (1967b) to compute the resonant frequencies by means of a numerical
relaxation technique. The corresponding modes are often referred to as Parker’s
modes, see Nayfeh & Huddleston (1979). In the context of water waves Evans &
Linton (1991) rediscovered Parker’s modes and showed that they are truly trapped
modes, i.e. with zero radiation loss and trapped near the structure in the laterally
bounded duct. For the symmetrically placed plate Parker’s trapped modes exist only
below the cutoff frequency of the first antisymmetric duct mode. Therefore, excitation
of these trapped modes by an incident wave of the same frequency is not possible
according to linear theory (recently Li & Mei 2006 showed that these trapped modes
could be excited subharmonically by an incident wave of twice the eigenfrequency).
Resonances above the first duct cutoff frequency are damped due to radiation losses
through the duct and a radiation condition has to be applied. However, Evans &
Porter (1998) found theoretical evidence that isolated, so-called embedded trapped
modes may also exist above the cutoff frequency under very special conditions.
These modes are embedded in the continuous spectrum and therefore difficult to
compute. Recently Duan et al. (2007) compared numerically obtained resonances with
vanishingly small imaginary part with calculations based on semi-analytic methods
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for simple structures in two-dimensional ducts and found excellent agreement between
the two approaches. This demonstrates that a numerical search for resonances with
vanishingly small radiation loss can aid in identifying trapped modes. Mathematically
it is of importance to prove the existence of exactly trapped modes because it means
the existence of an eigensolution to the homogeneous problem and therefore non-
uniqueness of the inhomogeneous problem. However, for practical purposes it makes
no difference whether the radiation loss is exactly zero or only very small because even
nearly trapped modes with very low radiation loss can be excited by self-sustaining
shear-layer oscillations.

The objective of the present paper is to extend the numerical method employed
by Duan et al. (2007) to the computation of acoustic resonances in infinitely long
pipes containing three-dimensional structures of finite length. Even though the sound
sources are flow-excited, the resonances are computed for the no-flow situation
assuming that the influence of flow on the resonances is negligible for low Mach
number flows, see Koch (1983). Of special interest are resonances with vanishingly
small damping which might correspond to trapped modes. We are aware of very few
publications proving the existence of exactly trapped modes for three-dimensional
structures in an infinitely long pipe with frequencies below the first pipe cutoff
frequency. Examples are the classical paper by Ursell (1991) for a sufficiently small
sphere in a pipe, and the extension to spheres of arbitrary size as well as to a
cylindrical sleeve in a pipe by Linton & McIver (1998). Regarding embedded trapped
modes with frequencies above the first pipe cutoff frequency, Linton & McIver (2007)
state that they are not aware of any calculations for three-dimensional guides. In the
present paper evidence is presented that embedded trapped modes may also exist for
annular cavities or closed side branches in a pipe for special geometric parameters
and frequencies. The existence of exactly trapped modes can only be proved for very
special geometries. However, the numerical method of Hein, Hohage & Koch (2004)
can be used to compute resonances in arbitrarily shaped domains as long as they
end in infinitely long pipes of constant cross-section. In this way one can identify
modes with vanishingly small damping as possible trapped modes if the damping
approaches zero as the finite element grid is refined. Of course the solution of the
discretized problem is limited by the relevant computational resources.

The paper is structured as follows: after a brief outline of the solution method
in § 2 the acoustic resonances of several finite-length obstacles in an infinitely long
circular cylindrical pipe are investigated in § 3. As engineering applications the
acoustic resonances are computed for a ball-type valve and a high-speed train in an
infinitely long tunnel. The acoustic resonances of cavities of finite axial extent as well
as closed side branches in an infinite pipe are computed in § 4. The concluding section
summarizes the various results.

2. Governing equation and solution procedure
The equation governing acoustic disturbances in a medium with zero mean flow

is the wave equation. In the following all lengths will be non-dimensionalized with
a characteristic reference length l∗

ref , velocities with the ambient speed of sound c∗
0,

densities with the ambient density ρ∗
0 , and pressures with ρ∗

0c
∗
0
2. Here the asterisk

superscript denotes a dimensional quantity. Assuming periodic time dependence
exp(−iω∗t∗), where ω∗ is the circular frequency, the wave equation can be reduced to
the Helmholtz equation

�φ(x, y, z) + K2φ(x, y, z) = 0 (2.1)
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for the (non-dimensional) velocity potential φ(x, y, z). � = ∂2/∂x2 + ∂2/∂y2 + ∂2/∂z2

is the three-dimensional Laplacian in (non-dimensional) Cartesian coordinates x, y, z

and K = ω∗l∗
ref /c

∗
0 denotes the dimensionless frequency, with K/2π being the

Helmholtz number. The time-independent dimensionless disturbance velocity and
pressure are then given by v(x, y, z) = ∇φ and p(x, y, z) = iKφ, respectively. On
the solid pipe walls as well as on any obstacle we impose the Neumann boundary
condition

∂φ

∂n
= 0 (2.2)

for sound-hard walls.
A complex number K with Im(K) < 0 is called a resonance if there exists

a non-trivial solution φ to the eigenvalue equation (2.1) satisfying the Neumann
boundary condition (2.2) and a radiation condition allowing only outgoing waves.
Mathematically, resonances are equivalently defined as poles of the meromorphic
extension of the resolvent of −� into the complex plane, see Hislop & Sigal (1996)
or Taylor (1996). Numerical computations are necessarily conducted on truncated
domains. At these finite grid boundaries unphysical reflections occur, often causing
large errors in the solution, unless special boundary conditions are applied on the
surface bounding the computational domain. Basically there are two methods to
overcome this problem: the first uses so-called non-reflecting boundary conditions on
the surface bounding the computational domain. Analysing the problem outside the
truncated computational domain a relation can be established involving the unknown
solution and its derivative. This so-called Dirichlet-to-Neumann (DtN) map is then
used as boundary condition for the interior computational domain. Applications to
wave guide problems can be found in Harari, Patlashenko & Givoli (1998) or Levitin
& Marletta (2006).

The second method employs absorbing boundary conditions by adding a non-
physical layer which absorbs outgoing waves without reflection. The so-called perfectly
matched layer (PML) boundary conditions were introduced by Bérenger (1994) and
became increasingly popular in electrodynamics and acoustics (for a recent review in
acoustics see Hu 2004). In the complex coordinate stretching formulation of the PML,
cf. Chew & Weedon (1994), the PML method is very similar to the much older complex
scaling method of atomic and molecular physics. The complex scaling method was
introduced by Aguilar & Combes (1971), Baslev & Combes (1971) and Simon (1973)
and soon developed into an efficient computational tool, see Hislop & Sigal (1996)
or the recent review by Moiseyev (1998). For wave guides with Dirichlet boundary
conditions, so-called quantum wires, the method appears to have been proposed for
the first time by Duclos, Exner & Šťovı́ček (1995). Duan et al. (2007) applied it to
two-dimensional acoustic wave guide problems. Of particular importance are trapped
modes which are defined as resonances with zero radiation loss. In a numerical
method resonances with an imaginary part approaching zero can aid identification of
trapped modes as demonstrated by Duan et al. (2007).

In the present paper we shall apply the complex scaling method to the computation
of acoustic resonances in three-dimensional wave guides. The complex scaling method
works as follows: in the PML domain φ(x, y, z) is continued analytically with respect
to the axial variable x to the complex variable ξ , e.g.

ξ (x) = x + iσ (x). (2.3)
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Figure 2. (a) Sphere in circular cylindrical pipe (with PMLs), (b) ball-type valve
(without PMLs).

The spatial damping function σ (x) is usually chosen in power form, smoothly starting
at the PML interface at x = ±xPML:

σ (x) =

⎧⎪⎨
⎪⎩

σ0 (x − xPML)β, x > xPML,

0, |x| � xPML,

−σ0 (−x − xPML)β, x < −xPML.

(2.4)

For a positive damping coefficient σ0 and a constant shape parameter β � 1 (we
chose β = 1 for all our computations, cf. Hein et al. 2004) outgoing waves will decay
exponentially in the PML. One can therefore truncate the PML at ±(xPML + dPML),
where dPML denotes the width of the PML, see figure 2(a). The error due to artificial
reflections at this truncated outer edge of the PML is small if σ0 and dPML are
chosen properly (in general we chose σ0 = 1 and dPML � 4). Therefore, a Dirichlet
boundary condition can be imposed at the outer edge of the PML instead of enforcing
the radiation condition, cf. Collino & Monk (1998). A finite-domain eigenvalue
problem results which can be solved numerically by standard codes. In this paper
we apply the high-order finite-element code NGSolve of Joachim Schöberl together
with his grid generation code NETGEN (Schöberl 1997), and solve the ensuing large
eigenvalue problem with a shifted Arnoldi algorithm. The accuracy of the finite-
element solution is controlled by the maximal mesh size � of the grid and the order
p of the finite-element polynomial on an individual triangle. For three-dimensional
objects the number of degrees of freedom Ndof in the finite-element formulation, and
correspondingly the storage requirements, are quite large such that we use p = 2 in
almost all our calculations. For occasional accuracy checks we increase p to p = 3
or p = 4. In NGSolve the mesh size � can be varied locally. For example we chose
a much coarser mesh in the PML.

3. Obstacles in a cylindrical pipe
Trapped modes are to be expected around localized features in a wave guide, which

we take to be a circular cylindrical pipe of constant diameter D∗. Then D∗ is the
natural reference length l∗

ref and K = ω∗D∗/c∗
0. The first feature we investigate is a

finite-length three-dimensional obstacle in a circular cylindrical pipe. Usually these
objects are convex, but they need not be as demonstrated by the model of a ball-type
valve, see figure 2(b), also treated in this section.

3.1. Sphere in a circular cylindrical pipe

For the two-dimensional problem of a hard-walled cylinder placed midway between
two parallel plates Callan, Linton & Evans (1991) proved the existence of trapped
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Figure 3. Centred sphere in pipe: frequencies of first four x-symmetric trapped modes
m = 1, . . . , 4 as a function of d/D computed with p = 2, dPML = 6, σ0 = 1, � = 0.04/0.12
(the second number always indicates the � used in the PML).

modes. Ursell (1991) extended this proof to three dimensions, i.e. a hard-walled sphere
of diameter d located on the axis (s = 0) of a hard-walled, circular cylindrical pipe
of diameter D, figure 2(a). Using multipole expansions Ursell (1991) proved that a
trapped mode exists with no radiation to infinity provided the sphere is sufficiently
small and the wavenumber is near to (and below) the cutoff wavenumber of the
pipe. Linton & McIver (1998) extended Ursell’s proof to spheres of arbitrary size
and showed that an infinite sequence of trapped circumferential modes exists whose
wavenumbers tend to infinity. However, as far as we know, no computation of the
trapped mode frequencies has been published up to now. In the following we shall
compute the acoustic resonances for this problem numerically and, with the existence
of trapped modes established theoretically, we identify the numerically obtained
complex resonances with vanishingly small damping as Ursell’s trapped modes.

Taking advantage of symmetries about x = 0 and z = 0 we limit the computational
domain to the quarter-problem x � 0, z � 0. Figure 3 shows the frequencies of
the first four circumferential trapped modes, marked m = 1, . . . , 4. Here m denotes
the circumferential mode number and the dotted lines mark the respective cutoff
frequencies. Samples of the eigenfunctions Re(φ) on the surface of the quarter-
problem for d/D = 0.6, corresponding to the conditions marked by asterisks in
figure 3, are depicted in figure 4. The line at d/D = 1 in figure 3 marks the limiting
case when the sphere touches the pipe wall. For d/D > 1, marked by the shaded
area, the sphere separates the pipe into two disconnected semi-infinite pipes with a
spherical bottom. For the sphere all trapped modes appear to be symmetric in x.
For longer structures antisymmetric trapped modes are also possible as demonstrated
in § 3.3 for a finite-length cylinder. For a centred sphere the resonances which are
symmetric and antisymmetric in z have the same trapped mode frequency; only the
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m = 1 m = 2 m = 3 m = 4

Figure 4. Centred sphere in pipe with d/D = 0.6: eigenfunctions of first four x-symmetric
trapped modes m = 1, . . . , 4 marked by asterisks in figure 3. Depicted are the eigenfunctions
Re(φ) on the surface of the quarter-problem x � 0, z � 0 up to xPML = 1.

corresponding eigenfunctions are phase shifted by 90◦. All computations in figure 3
were performed with p = 2. Increasing the polynomial order to p = 3 for several
selected points reduced the imaginary part Im(K/2π) of the resonant frequencies to
10−7, strongly indicating that these are indeed truly trapped modes.

Next we allow the centre of the sphere to move a distance s away from the
centreline of the pipe. But, before investigating the three-dimensional case of the
sphere we follow the suggestion of a referee and compute for comparison the two-
dimensional case of a cylinder of diameter d in a two-dimensional waveguide formed
by two parallel plates a distance h apart (in the two-dimensional case K is defined
as K = ω∗h∗/c∗

0). For this case Aslanyan, Parnovski & Vassiliev (2000) proved
that the real trapped mode eigenvalue transforms into a complex resonance as the
cylinder moves off-centre. Figure 5 shows our corresponding numerical results for
d/h = 0.6, clearly demonstrating the transformation of the trapped mode into a
resonance with radiation loss. At s/h = 0.2 the cylinder touches the waveguide wall
and for s/h > 0.2 (marked by the shaded area in figure 5) the cylinder penetrates
the wall resulting in a circular protrusion on one waveguide wall. Near s/h = 0.2
the resonance frequency approaches the first cutoff frequency depicted by the dotted
line in figure 5(a). Unfortunately, near a cutoff frequency our numerical method
encounters a basic difficulty because the wave propagates almost parallel to the edge
of the perfectly matched layer (shown as PML for example in figure 2(a)) which
makes the PML ineffective. Increasing the length dPML of the PML helps, as can be
seen in figure 5(b), but another problem is encountered which has been discussed
in Duan et al. (2007): resonances are members of the discrete spectrum. At the cutoff
frequencies continuous spectra start, which are approximated by discrete eigenvalues
in our numerical approach. These discrete numerical eigenvalues, which are strongly
dependent on the PML parameters, can be mistaken as resonant eigenvalues near
a cutoff frequency and it becomes practically impossible to distinguish the two.
Therefore, for s/h > 0.2 we do not consider the damping values in figure 5(b) to be
accurate. However, the resonant frequency in figure 5(a) changes very little.

Now we return to the three-dimensional case and displace the centre of the sphere
by a distance s from the axis of the pipe, say along the y-direction normal to the
axis of the pipe, which is taken to be the x-coordinate. For the centred sphere the
trapped modes are double eigenvalues (see also Linton & McIver 1998, p. 403), and
by moving the centre of the sphere away from the axis of the pipe the trapped mode
frequencies split into two eigenfrequencies as shown in figure 6(a) for m = 1. The
resonance belonging to the mode symmetric in z (depicted by the solid and dash-
dotted curves) shows a behaviour similar to that of the damped resonance in the
above two-dimensional case. However, the radiation damping of the z-antisymmetric
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Figure 5. Cylinder in two-dimensional waveguide with d/h = 0.6: (a) variation of resonant
frequency Re(K/2π) and (b) damping Im(K/2π) with off-centre distance s/h computed with
p = 6, σ0 = 1, � = 0.08 and various dPML.

mode (depicted by the dashed curve) is much lower than that of the z-symmetric
mode, to the extent that the z-antisymmetric modes might even be truly trapped
modes (with our numerical method we cannot prove this, but the imaginary part
Im(K/2π) was found to be 10−10 for some s/D). This is strikingly different from the
two-dimensional case and apparently due to the symmetry property about z = 0. At
s/D = 0.2 the sphere with d/D = 0.6 touches the wall and the z-symmetric m = 1
mode frequency approaches the m = 1 cutoff frequency depicted by the dotted line
in figure 6(a). For s/D > 0.2 (marked by the shaded area in figure 6) the sphere
penetrates the wall of the pipe, constituting a hump-like obstacle on the pipe wall.
As for the two-dimensional case the PML computation fails near s/D = 0.2 for the
z-symmetric mode as demonstrated by the large difference between the two curves
for the PML parameters σ0 = 1 and 0.5 in figure 6(b).

3.2. Ball-type valve in a circular cylindrical pipe

If we consider a sphere in the pipe with a diameter d/D =
√

2 and drill a hole of
diameter D through the sphere we obtain a simple model of a ball-type valve as
depicted in figure 2(b). The valve angle α = 0◦ denotes the completely open valve
position and at α = 90◦ the valve is completely closed. The real and imaginary parts
of the resonant frequencies computed with p = 2 are shown in figure 7. The results are
qualitatively similar to the results for the two-dimensional model presented in Duan
et al. (2007) with the exception that additional circumferential modes appear. For the
completely closed position α = 90◦ the resonances converge to the real resonances of
a circular cylindrical cavity with a spherical cap at both ends. For the computation
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Figure 6. Sphere in pipe with d/D = 0.6: (a) variation of resonant frequency Re(K/2π) and
(b) damping Im(K/2π) of the m = 1 modes with off-centre distance s/D. The solid curve
depicts the z-symmetric m = 1 mode and the dashed curve the z-antisymmetric m = 1 mode
computed with p = 2, dPML = 6, σ0 = 1, � = 0.04/0.12. The dash-dotted curve shows the
z-antisymmetric m = 1 mode computed with σ0 = 0.5. The dashed curve in (b) coincides with
the abscissa within drawing accuracy.

of the resonances in this closed cavity we can take advantage of symmetries in the
three coordinates. The corresponding cavity resonance frequencies are marked by
the arrows on the right-hand side of figure 7(a) and are labelled according to the
symmetry (S) or antisymmetry (A) of the eigenfunction φ in x, y, z respectively. Most
of the resonances quickly reach high damping as the valve is opened. Only the mode
depicted by the solid curve seems to become a nearly trapped mode with very low
damping in the vicinity of α = 45◦ and therefore might be expected to cause the
largest noise when excited by shear layers. Increasing p to p = 4 did not reduce
the imaginary part of this mode noticeably, indicating that it is not a truly trapped
mode. The resonant mode starting as SAS, depicted by the dash-dotted curve, reaches
maximal damping near α = 30◦ and then approaches the first cutoff frequency of the
pipe depicted by the horizontal line in figure 7(a).

3.3. Finite-length cylinder in a circular cylindrical pipe

As a third example we consider a hard-walled circular cylinder of length l and diameter
d placed in a hard-walled circular cylindrical pipe of diameter D. The axis of the
cylinder is aligned with the pipe axis but shifted by an amount s in the y-direction,
see figure 8. First we investigate the case with s = 0, i.e. a concentric cylinder. For
the case of axisymmetric hard-walled obstacles on the axis of a circular cylindrical
pipe of constant cross-section Linton & McIver (1998) proved the existence of an
infinite sequence of trapped circumferential modes. Similar to the existence proof
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Figure 7. Resonances of ball-type valve as a function of valve angle α: (a) resonant frequency
Re(K/2π) and (b) damping Im(K/2π) of first few resonances computed with p = 2, dPML = 5,
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Figure 8. Circular (chamfered) cylinder of finite length placed eccentrically in a circular pipe.

of Ursell (1991), Linton & McIver (1998) introduced a cutoff by considering modes
of a particular angular variation

φ(x, r, θ) = φ̂(x, r) cos(mθ). (3.1)

As an example Linton & McIver (1998) computed the trapped mode frequencies for
an infinitely thin circular sleeve placed concentrically in a circular pipe by means of
the mode matching technique of Mittra & Lee (1971). In this section, instead of the
circular sleeve we consider a hard-walled circular cylinder and compute the complex
resonances numerically using PMLs. The common axis of the pipe and the cylinder
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Figure 9. Axisymmetric solid cylinder with d/D = 0.6 in pipe: variation of x-symmetric (even
n, solid curves) and x-antisymmetric (odd n, dashed curves) trapped mode frequencies as a
function of cylinder length l/D computed with p = 2, dPML = 4, σ0 = 1, � = 0.04/0.16.
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Figure 10. Finite-length cylinder centred in pipe with d/D = 0.6 and l/D = 2: sample
eigenfunctions (m, n, ρ) of x-symmetric and x-antisymmetric trapped modes. Depicted are the
eigenfunctions Re(φ) on the surface of the quarter-problem x � 0, z � 0 up to xPML = 1.5.

is taken to be the x-coordinate. For the actual computation we take advantage of
symmetries about x = 0 and z = 0 and limit our domain again to the quarter-problem
x � 0, z � 0. Identifying complex resonances with vanishingly small imaginary part as
trapped modes the trapped mode frequencies of the first four circumferential trapped
modes m = 1, . . . , 4 are depicted in figure 9 as a function of cylinder length l/D for
the particular value d/D = 0.6. The results are very similar to the results for the
sleeve presented in figure 1 of Linton & McIver (1998).

For axisymmetric obstacles on the centreline it is advantageous to distinguish
resonant modes by three numbers (m, n, ρ). Here m is the circumferential mode
number, and n and ρ denote the number of nodal lines in the axial and radial
direction respectively. The solid curves in figure 9 depict the trapped mode frequencies
of the modes symmetric about x = 0, i.e. n = 0, 2, . . .; the dashed curves show the
antisymmetric mode frequencies, i.e. n = 1, 3, . . . . Sample eigenfunctions on the
surface of the quarter-problem x � 0, z � 0 are shown in figure 10 for l/D = 2,
marked by the various symbols in figure 9. Clearly, the trapped modes exist only in



412 S. Hein and W. Koch

0 0.2 0.4 0.6 0.8 1.0

 0.2

 0.4

 0.6

 0.8

 1.0

 1.2

 1.4

 1.6

 1.8

R
e(

K
/2

π
)

d/D

(1, 0, 0)

(1, 1, 0)

(2, 0, 0) (2, 1, 0)

(2, 2, 0)

(3, 0, 0)
(3, 1, 0)

(3, 2, 0)

(4, 0, 0) (4, 1, 0)

(4, 2, 0)

(4, 3, 0)

(1, 0, 1)

(1, 1, 1)

Figure 11. Finite-length cylinder with l/D = 2 centred in pipe: variation of (m, n, ρ) trapped
mode frequencies as a function of d/D computed with p = 2, dPML = 4, σ0 = 1, � = 0.04/0.16.

the shaded domains between the cutoff frequencies of the empty pipe (dotted lines)
and the cutoff frequencies of the annular pipe with d/D = 0.6 (dash-dotted lines),
similar to the circular sleeve results of Linton & McIver (1998).

Keeping l/D = 2 fixed we now vary d/D as in figure 2 of Linton & McIver
(1998) for the cylindrical sleeve problem. The trapped mode frequencies are shown
in figure 11 with the modal numbers (m, n, ρ) appended. The frequency curves are
very similar to those for the cylindrical sleeve of Linton & McIver (1998). However,
we have included the m = 4 modes and notice the appearance of the first radial
trapped modes ρ = 1. For the empty pipe the cutoff frequency of the first radial
mode, namely Re(K/2π) = 1.69705, is very close to the cutoff frequency of the fourth
circumferential mode, namely Re(K/2π) = 1.69263.

Linton & McIver’s (1998) existence proof of trapped modes applies only to centred
axisymmetric objects. If the cylinder is no longer axisymmetric, for example by
chamfering as indicated by the dashed lines in figure 8, or displacing the axis of the
cylinder, i.e. s �= 0, one expects the trapped modes to become damped resonances. To
investigate this we look first at a cylinder with s = 0 but chamfered symmetrically on
both ends (as indicated by the dashed lines in figure 8) such that we still may apply
symmetry arguments with respect to x = 0 and z = 0. The results for d/D = 0.6
and l/D = 2 are depicted in figure 12 for the first x-symmetric (n = 0) and first
x-antisymmetric (n = 1) mode starting with the m = 1 modes marked by the same
symbols as in figure 9. The trapped modes of figure 9 are double resonances and split
into z-symmetric and z-antisymmetric modes for ϕ �= 0. Whereas the z-antisymmetric
modes remain practically undamped, the z-symmetric modes become quickly damped



Acoustic resonances in pipes and tunnels 413

0 10 20 30 40 50 60 70
 0.30

 0.35

 0.40

 0.45

 0.50

 0.55

 0.60

R
e(

K
/2

π
)

n = 0

n = 1

(a)

0 10 20 30 40 50 60 70
–0.005

–0.004

–0.003

–0.002

–0.001

0

Im
(K

/2
π

)

ϕ (deg.)

n = 0

n = 1

(b)

Figure 12. Chamfered finite-length cylinder with d/D = 0.6 and l/D = 2 centred in pipe:
variation of (a) resonant frequency Re(K/2π) and (b) damping Im(K/2π) of the m = 1 modes
with the angle ϕ of the chamfering plane. The solid curves depict the z-symmetric modes
and the dashed curves the z-antisymmetric modes computed with p = 2, dPML = 4, σ0 = 2,
� = 0.08/0.16. The dashed curves in (b) coincide with the abscissa within drawing accuracy.

as ϕ increases. Near ϕ = 70◦ the chamfering plane cuts the cylinder close to the
symmetry plane x = 0.

Next we displace the axis of the axisymmetric inner cylinder in the y-direction by
a distance s as sketched in figure 8. Again, the marked trapped mode eigenvalues
of figure 9 split into z-symmetric and z-antisymmetric resonances for s > 0. The
corresponding results for the m = 1 modes with d/D = 0.6 and l/D = 2 are shown
in figure 13. At s/D = 0.2 the inner cylinder touches the pipe wall and for s/D > 0.2
(marked by the shaded domain in figure 13) penetrates the pipe wall and acts like
a cylindrical hump on the wall. Again one would expect that with increasing s all
trapped modes become damped resonances. Whereas this seems to be the case for
the z-symmetric modes (solid curves in figure 13), the z-antisymmetric modes (dashed
curves in figure 13) are almost undamped. The z-symmetric n = 0 and n = 1 modes
approach the first cutoff frequency (shown in figure 13(a) by the dotted line) from
below for s/D < 0.2. For s/D > 0.2 higher z-symmetric n modes exist above the first
cutoff frequency but they are highly damped as can be seen in figure 13(b) for the
least damped n = 2 mode. Near the cutoff frequency the PML computation becomes
inaccurate. The dotted curves in figure 13(b) are computed by doubling the thickness
of the PML, i.e. dPML = 8, and the slight deviations near the cutoff frequency indicate
that the solution has not converged there.

As mentioned before, all trapped mode eigenvalues of figure 9 are double
eigenvalues and the corresponding eigenfunctions are identical but phase-shifted by
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Figure 13. Finite-length cylinder with d/D = 0.6 and l/D = 2 in pipe: variation of (a)
resonant frequency Re(K/2π) and (b) damping Im(K/2π) of the m = 1 modes with the
off-centre distance s/D. The solid curves depict the z-symmetric modes and the dashed curves
the z-antisymmetric modes computed with p = 2, dPML = 4, σ0 = 1, � = 0.08/0.16. The
dashed curves in (b) coincide with the abscissa within drawing accuracy.

90◦, i.e. the eigenvalues have algebraic and geometric multiplicity 2. Superimposing
two such eigenfunctions one obtains trapped acoustic spinning modes, cf. Parker
(1984) or Duan & McIver (2004). If the effect of compressor blades is included, as
in Duan & McIver (2004), these acoustic spinning mode resonances can enhance
rotating sources caused by vortex shedding from blade rows. Experimentally such
acoustic resonances were observed by Parker (1967a) for a single-stage compressor
and Camp (1999) for a multi-stage compressor. Distinctive characteristics of these
acoustic resonances in compressors are step changes with approximately constant
frequency as the shaft speed changes, and large-amplitude pressure fluctuations
accompanied by loud tones at lock-on.

3.4. High-speed train in an infinitely long tunnel

The existence of nearly trapped modes for non-axisymmetric obstacles in a pipe,
discussed in the previous section, suggest investigating acoustic resonances of a finite-
length high-speed train in an infinitely long tunnel. It is well known (see Diedrichs,
Krajnović & Berg 2008 or Suzuki 2004 and literature cited therein) that the Japanese
Series 300 Shinkansen showed large aerodynamically induced lateral vibrations of the
tail vehicle in double-track tunnels. These lateral vibrations of about 2 Hz occurred
at a speed of 300 km h−1 causing poor ride comfort. On the other hand, European
high-speed trains such as the German Inter-City Express 2 (ICE 2) did not show these
tail vehicle oscillations. Using large-eddy simulations (LES) of the flow about two
simplified models of these high-speed trains in double-track tunnels Diedrichs et al.
(2008) traced this difference in behaviour to the much stronger coherent wake-flow
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Figure 14. High-speed train model in an infinitely long double-track tunnel.
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Figure 15. Sample resonance spectrum of our high-speed train model with two traction units
and two middle wagons in a double-track tunnel computed with p = 2, σ0 = 8 or 1, dPML = 12,
δxPML = 0.5. The open symbols mark the nearly trapped resonances and the filled symbols
mark the highly damped surface-wave resonances. Circles denote x-symmetric modes and
triangles denote x-antisymmetric modes.

structures generated by the more rounded tail sides of the Shinkansen 300. If the
acoustic resonances of the high-speed train in a tunnel are weakly damped and close
to the frequency of excitation they could enhance these oscillations. Therefore, we
compute in the following the acoustic resonances of a simplified high-speed train
model in an infinitely long tunnel assuming that details such as running gears,
underbelly equipment or inter-vehicle gaps are negligible.

Figure 14 shows a sketch of the simplified high-speed train model in an infinitely
long tunnel. The main dimensions are chosen as follows: D∗ = 8.5 m, H ∗ = 3.25 m,
t∗ = 2.39 m, s∗ = 0.232 m, h∗ = 4.05 m and w∗ = 3.02 m. The radius r∗ is assumed
to be r∗ = 0.58 m and the reference length l∗

ref is chosen to be the tunnel diameter
D∗. The total length of the train is l∗ and we assume symmetry or antisymmetry
about x = 0 such that we may limit our computation to the half-problem x � 0. The
train consists of a traction unit 20.56 m long at both ends of the train and N middle
wagons, each of which is 26.4 m long.

A typical spectrum for two traction units with two middle wagons is depicted in
figure 15. We note that between the continuous spectra of the fundamental mode
frequency near Re(K/2π) = 0 and the first tunnel cutoff frequency, marked by the
dotted line, there exist two families of resonances: the open circular and triangular
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Figure 16. High-speed train model in a double-track tunnel as a function of half-train length
l/2 computed with p = 2, σ0 = 2, dPML = 2, δxPML = 0.5. (a) Resonant frequencies Re(K/2π),
(b) damping Im(K/2π). The open symbols mark the nearly trapped resonant modes for n = 0
and the filled symbols mark the highly damped surface-wave resonances for n = 0, starting
with N = 0 middle wagons up to N = 10 middle wagons.

symbols depict nearly trapped resonances below the first tunnel cutoff frequency,
whereas the filled symbols mark highly damped surface-wave resonances similar
to the two-dimensional surface-wave resonances described by Hein et al. (2007).
The eigenfunctions of the present three-dimensional surface-wave resonances are
almost uniform around the cross-section of the train but have n nodal lines in
the axial direction starting with n = 0 at Re(K/2π) = 0.0463. The surface-wave
resonances radiate via the fundamental tunnel mode and are highly damped, all
having approximately the same damping. The nearly trapped resonances resemble the
truly trapped modes of the axisymmetric cylinder depicted in figure 9. They exist only
below the first cutoff frequency of the empty tunnel and above the cutoff frequency
of the tunnel containing an infinitely long train. The spectrum in figure 15 is patched
together from two overlapping spectra with σ0 = 8 and σ0 = 1 at Re(K/2π) = 0.15,
marked by the dash-dotted vertical line. In this way the discrete members of the
continuous spectra (due to our numerical discretization) cannot be confused with the
true resonances marked by the circular and triangular symbols.

Figure 16 depicts the resonant frequency and damping of the two families of
resonances as a function of the train half-length l/2. The x-symmetric n = 0
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resonances are marked by symbols (open circles for the first nearly trapped resonance
and filled circles for the first surface-wave resonance). Here the first symbol at
l/2 = 2.4188 marks the length of the traction unit, i.e. N = 0. Each additional
middle wagon up to N = 10 is depicted by a further symbol with increasing l/2.
The resonances of the nearly trapped modes are in the shaded area of figure 16(a)
below the first tunnel cutoff frequency (marked by the dotted line) and above the
first cutoff frequency of the tunnel containing an infinitely long train (marked by
the dash-dotted line). For long trains the latter cutoff frequency Re(K/2π) = 0.4662
is approached by all nearly trapped modes. The corresponding eigenfunctions have
n nodal lines in the axial direction but have different signs on the tunnel wall
side and the tunnel centre side of the train. Therefore, they could enhance lateral
vibrations. However, with K/2π = 0.4662, D∗ = 8.5 m and c∗

0 = 340 m s−1 the
corresponding frequency is f ∗ ≈ 18 Hz, which is an order of magnitude higher
than the frequency of the observed lateral vibrations of the Shinkansen 300. The
frequencies of the surface-wave resonances have the correct order of magnitude but
could only enhance almost axisymmetric wake fluctuations. Furthermore, even though
the damping of the surface-wave resonances decreases with increasing train length,
the quality factor Q = |Re(K)/2 Im(K)| seems too low for strong enhancement.
Exploratory computations show that qualitatively and quantitatively very similar
results are to be expected for the ICE 2 and Shinkansen 300 geometries of Diedrichs
et al. (2008). We therefore agree with Diedrichs et al. (2008) that the difference in the
wake flow between the ICE 2 and the Shinkansen 300 is probably the sole reason
for the strong lateral vibrations of the Shinkansen 300, without any enhancement by
acoustic resonances.

4. Cavity in a cylindrical pipe
In this section we investigate acoustic resonances around a second type of localized

feature, namely a cavity in an infinitely long cylindrical pipe of diameter D. Such
resonances are usually excited aerodynamically by self-excited shear layers over the
mouth of the cavity. Rockwell & Naudascher (1978) classified this as ‘fluid – resonant
oscillation’ which can lead to high-amplitude locked-on states for resonant modes
with high quality factor Q, i.e. low radiation loss, possibly causing serious vibration
and noise problems (for a recent review of fluid – resonant oscillations see Rockwell
et al. 2003).

4.1. Axisymmetric cavity

In the electromagnetic context axisymmetric cavities are of great importance for
example in the design of superconducting linear accelerators where resonances above
the first cutoff frequency of the beam tubes having a high quality factor Q may cause
beam instabilities, see Schuhmann & Weiland (2000). In the acoustical context of this
paper we compute acoustic resonances for the simpler geometry of an axisymmetric
cylindrical cavity of length l and depth h in a pipe as sketched in figure 17.
Essentially this is a three-dimensional extension of the two-dimensional geometry
investigated recently by Duan et al. (2007). Such axisymmetric cylindrical cavities can
produce high-amplitude narrow-band noise in steam pipe lines caused for example
by vortex shedding in open gate valves, see Smith & Luloff (2000) or Lafon et al.
(2003).

For this axisymmetric problem we again classify resonant modes via the three
modal numbers (m, n, ρ). First we fix the cavity height h/D = 1 and vary the cavity
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Figure 17. Axisymmetric cavity in a circular pipe.

length l/D. In a pipe without a cavity the cutoff frequencies for the (m, ρ) modes
in the pipe with diameter D provide an upper limit for trapped modes, whereas
the cutoff frequencies for the (m, ρ) modes in the pipe with D + 2h, formed by the
cavity, give a lower limit. For the (1, 0) duct mode these cutoff limits are marked
in figure 18(a) by the dotted and dash-dotted line respectively. The domain of the
(1, n, 0) trapped modes lies between these two limits in the shaded area. This can be
seen clearly in figure 18(b) where all (1, n, 0) modes have zero damping as long as
they are in the shaded domain but become damped once they are above the dotted
line for the (1, 0) cutoff frequency in the pipe. However, we notice that at particular
values of l/D (and particular frequencies) the resonances also approach zero damping
above the first cutoff frequency, strongly indicating the existence of embedded trapped
modes. The general appearance is very similar to that of the two-dimensional problem
treated by Duan et al. (2007) where truly embedded trapped modes were computed
semi-analytically via mode matching (probably the same method could be used to
compute truly embedded trapped modes in our axisymmetric case). The resonance
frequency curves for the (m, 0, 1) modes look similar to the ones for the (m, 0, 0)
modes in figure 18(a) but lie at higher Re(K/2π) values. Figure 19 shows sample
eigenfunctions for l/D = 2 and h/D = 1, including the radial eigenfunction (1, 0, 1)
at Re(K/2π) = 0.5695 which is either a truly trapped mode or a nearly trapped mode
with very small imaginary part.

Figure 20 shows the resonant frequencies for a few (m, n, 0) modes with constant
cavity length l/D = 1 but variable cavity depth h/D. The trapped mode domain of
the (1, n, 0) modes between the cutoff frequency (1, 0)D in the pipe and the cutoff
frequency (1, 0)D+2h in the cavity is marked by the shaded area.

4.2. Side branch cavity

Next we study acoustic resonances in closed cylindrical side branches of equal diameter
d crossing the circular main pipe of diameter D at a right angle as depicted in figure 21.
Side branches of equal length l = l1 = l2 on opposite sides of the main pipe with
l3 = 0 are called coaxial side branches or a cross junction, see Ziada & Bühlmann
(1992) or Kriesels et al. (1995). A single side branch, i.e. l2 = l3 = 0, is termed a
T-junction, see Jungowski, Botros & Studzinski (1989), and tandem side branches are
two side branches of length l1 and l3 on the same side of the main pipe but a distance
s apart with l2 = 0, see Ziada & Bühlmann (1992), Ziada & Shine (1999), Dequand
et al. (2003).

A related electromagnetic problem of coupled circular waveguides has been
investigated recently by Annino et al. (2006). They used a finite-element method with
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Figure 18. Axisymmetric cavity with h/D = 1: (a) resonant frequencies of the first few
(m, n, 0) modes as a function of cavity length l/D. The shaded area marks the domain of the
(1, n, 0) trapped modes. Solid lines denote x-symmetric modes, dashed lines x-antisymmetric
modes. (b) Damping of (1, n, 0) modes with n = 0, . . . , 4. (To distinguish the individual curves
the origin of each curve is shifted by −0.001). The symbols mark possible embedded trapped
modes above the first cutoff frequency. p = 2, dPML = 4, σ0 = 1.
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Figure 19. Axisymmetric cavity with h/D = 1 and l/D = 2: sample eigenfunctions of
x-symmetric and x-antisymmetric resonances (m, n, ρ). Depicted are the eigenfunctions Re(φ)
on the surface of the quarter-problem x � 0, z � 0 up to xPML = 2.



420 S. Hein and W. Koch

0 0.4 0.8 1.2 1.6 2.0

0.2

0.4

0.6

0.8

1.0

R
e(

K
/2

π
)

h/D

(1,0)D

(2,0)D

(1,0)D+2h

(10,0,0)
(9,0,0)

(8,0,0)(7,0,0)(6,0,0)(5,0,0)(4,0,0)(3,0,0)

(2,0,0)

(1,0,0)

(1,1,0)

(2,1,0)

(3,1,0)

(4,1,0)

(5,1,0)

(6,1,0)

(7,1,0)

(8,1,0)

(9,1,0)

Figure 20. Axisymmetric cavity with l/D = 1: resonant frequencies of the first few (m, n, 0)
modes as a function of cavity depth h/D. The shaded area marks the domain of the (1, n, 0)
trapped modes. Solid lines denote x-symmetric modes, dashed lines x-antisymmetric modes.
p = 2, dPML = 4, σ0 = 1.

x

y

D
s

d

d

d

A

A

l1

l2

l3

z

y

D

d

d

B

B

Figure 21. Side branch cavities in a circular pipe.

PMLs similar to ours and corroborated their theoretical results experimentally. Such
waveguide crossings are of particular importance for so-called quantum wires, see the
literature cited in Annino et al. (2006). In quantum wires, with Dirichlet boundary
conditions instead of the Neumann boundary conditions of acoustics, trapped modes
are termed bound states and can be sustained at the intersection of two waveguides
below the cutoff frequency of either waveguide. Unlike this, in our acoustical problem
trapped modes are formed by cavity resonances in the closed side branches of the
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main pipe. Below the cutoff frequency of the main pipe such trapped modes are
usually excited aerodynamically by self-excited shear layers at the opening of the side
branches and can lead to severe vibration and noise problems in gas and steam pipe
lines, see for example Jungowski et al. (1989), Ziada & Bühlmann (1992), Kriesels
et al. (1995), Ziada & Shine (1999) and references cited therein. Above the first cutoff
frequency of the main pipe embedded trapped modes are possible only if the cavity
modes do not couple with the cuton modes of the main pipe. Necessarily, this can
occur only under very special conditions and for very particular frequencies, see the
remark in Duan et al. (2007) for two-dimensional wave guides. Up to now we have
found no conclusive evidence of embedded trapped modes for side branches above
the cutoff frequency of the main pipe. However, nearly trapped mode resonances with
very low damping may also be of importance in engineering applications.

4.2.1. Symmetric cross junction

First we investigate resonances in a so-called symmetric cross junction with side
branches of equal length l = l1 = l2 on opposite sides of the main pipe, as examined
experimentally by Ziada & Bühlmann (1992) and Kriesels et al. (1995). We arbitrarily
fix d/D = 0.5 and vary the side branch length l/D. According to Ziada & Shine
(1999) coaxial side branches of equal length produce the strongest resonance and
have the lowest radiation loss. Due to symmetries about the three axes we can confine
our computation to the octant x � 0, y � 0, z � 0 by applying appropriate symmetry
conditions at x = 0, y = 0 and z = 0. As for the closed ball-type valve of § 3.2 we
denote a mode by SAS if it is symmetric in x, antisymmetric in y and symmetric
in z, and so on. Figure 22 shows the lowest SAS resonances as a function of side
branch length l/D. Essentially these are the acoustic modes with an odd number of
quarter-wavelengths in one side branch

L∗f ∗/c∗
0 = (1/4 + n/2), n = 0, 1, 2, . . . , (4.1)

as defined by Jungowski et al. (1989), Ziada & Bühlmann (1992) and Kriesels et al.
(1995).

The open question remains of what to take as L∗. Kriesels et al. (1995) define
L∗ as the distance from the axis of the main pipe to the end of the side branch.
The corresponding odd number λ/4 resonances are shown by the dotted curves in
figure 22(a). The odd number λ/4 resonances with L∗ equalling the side branch
length l∗, as defined by Ziada & Bühlmann (1992), are depicted by the dashed curves.
We see that up to the first cutoff frequency (1, 0)D in the main pipe the actual
resonances, depicted by the solid curves, are between these two approximations. This
is in accordance with the findings of Kriesels et al. (1995), who mention that λ/4 > l.
Below the first cutoff frequency (1, 0)D the imaginary parts of the λ/4 resonances
are less than 10−9 almost uniformly throughout the shaded domain in figure 22(a).
Although this is no proof, it is a strong indication that these λ/4 resonances are
truly trapped modes, which agrees with the statement of Ziada & Shine (1999) that
coaxial branches of equal length have negligible radiation loss into the main pipe.
Near the first cutoff frequency (1, 0)D the efficiency and hence the accuracy of our
PML deteriorates as can be seen from the slight oscillations in figure 22(b) near
the cutoff frequency. Above the first cutoff frequency (1, 0)D the λ/4 resonances are
strongly damped due to radiation losses as can be seen clearly in figure 22(b). The
y-symmetric modes SSS are always damped because they can radiate through the
main pipe via the fundamental pipe mode (0, 0) (see the solid symbols at l2/l1 = 1 in
figure 23(b)).
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Figure 22. Symmetric cross junction with d/D = 0.5. (a) Resonant SAS frequencies of first six
(2n+1)λ/4 modes as a function of side branch length l/D. The shaded area marks the domain
of possibly trapped modes. Dotted curves denote approximation of resonant frequencies with
(2n + 1)λ/4 = l + 1/2, dashed curves denote approximation of resonant frequencies with
(2n + 1)λ/4 = l, n = 0, 1, . . . . (b) Radiation damping of (2n + 1)λ/4 modes with n = 2 up to
n = 5 computed with p = 2, xPML = 1.2, dPML = 4, σ0 = 1.

As pointed out by a referee experimental results of Kriesels et al. (1995) demonstrate
that the higher harmonics of the resonance are associated with significant radiation
losses. Figure 22 shows that above the cutoff frequency (1, 0)D considerable damping
occurs which agrees with these experimental observations.

4.2.2. Asymmetric cross junction

Next we fix d/D = 0.5 and the length l1/D = 2 of the first side branch and vary
the length l2/D of the second side branch. Now the problem is no longer symmetric
or antisymmetric about y = 0 and we limit our computation to the quarter-problem
x � 0, z � 0 by applying symmetry conditions at x = 0 and z = 0. The x-symmetric,
z-symmetric (SS) results are shown in figure 23. Starting with l2/l1 = 1, i.e. the
symbols in figure 22(a), we see that all three (possibly trapped) SAS modes below the
cutoff frequency (1, 0)D become damped when l2/l1 �= 1. On the other hand the SSS
modes of the symmetric cross junction below the cutoff frequency (1, 0)D , depicted by
the filled symbols at l2/l1 = 1, are already damped as mentioned above. On moving
away from l2/l1 = 1 one resonance frequency remains more or less constant whereas
the other varies until it almost coincides with one of the neighbouring constant
frequencies. At these special points, marked by the cross symbols in figure 23, isolated
trapped modes seem to exist. They correspond roughly to the condition where there
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Figure 23. Asymmetric cross junction with d/D = 0.5 and l1/D = 2: (a) resonant frequencies
and (b) radiation damping of the first few x-symmetric, z-symmetric modes as a function
of l2/l1. The solid curves with the open symbols start at the SAS modes of figure 22(a) at
l/D = 2, the curves with the filled symbols correspond to the SSS modes. All are computed
with p = 2, xPML = 1.2, dPML = 4, σ0 = 1.

are (2n + 1)λ/4 wavelengths in side branch 1 and (2ν + 1)λ/4 wavelengths in side
branch 2, n, ν = 0, 1, 2, . . ..

From this one concludes that asymmetry of the cross junction side branches damps
oscillations, but only away from the trapped mode points mentioned above. It is also
interesting to note that the mode above the cutoff frequency (1, 0)D in figure 23, i.e.
the curve with the filled squares for l2/l1 < 1, has two damping minima which are
clearly below zero, contrary to the isolated trapped mode values of the modes whose
frequency is below the cutoff frequency (1, 0)D .

4.2.3. Tandem side branches

The second example where Ziada & Bühlmann (1992) observed large-amplitude
oscillations in their experiments were tandem side branches with l = l1 = l3 and l2 = 0.
Therefore, we compute the resonances in such equal-length tandem side branches in
this section. We fix l/D = 2, d/D = 0.5 and vary the distance s/D between the two
side branches, see figure 21. By applying symmetry conditions at x = 0, which for the
case of equal-length side branches is chosen halfway between the two side branches,
and z = 0 we can limit our computations to the quarter-problem x � 0, z � 0.

The first five x-symmetric, z-symmetric resonances SS are depicted in figure 24 for
0 � s/D � 5. At s/D = 0.5 the two side branches touch each other forming a single
side branch with non-circular cross-section. Between s/D = 0 and s/D = 0.5, marked
by the shaded area in figure 24, the two side branches are no longer separated
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Figure 24. x-symmetric, z-symmetric tandem side branches of equal length l/D = 2 with
d/D = 0.5: (a) resonant frequencies and (b) radiation damping of the first five SS modes as a
function of distance s/D between the two branches computed with p = 2, dPML = 4, σ0 = 1.

by the main pipe in the x-direction. However, as can be seen, the x-symmetric
resonances of the single side branch with non-circular cross-section constitute the
natural continuation of the tandem mode resonances. At s/D = 0 the side branch
reduces to a single side branch with circular cross-section (T-junction). Note that all
T-junction modes are damped. The resonant frequencies Re(K/2π) are determined
by the length of the side branches and therefore remain almost constant (at least
below the first cutoff frequency (1, 0)D of the main pipe). On the other side, the
damping Im(K/2π) varies considerably depending on the distance s between the
tandem branches. The damping reaches vanishingly small values at the few tuned
values marked by the cross symbols in figure 24. By refining s/D iteratively near these
tuned values the damping of the resonances below (1, 0)D can be reduced to very
small values, indicating that probably the corresponding modes are truly trapped.
For the x-symmetric modes of figure 24 these tuned values occur at approximately
s/D = (2n − 1)λ/2, n = 1, 2, . . . , as suggested by Ziada & Bühlmann (1992). At these
tuned frequencies the eigenfunction amplitude has a maximum at x = 0.

Figure 25 depicts the first five x-antisymmetric, z-symmetric resonances AS. Unlike
the x-symmetric modes of figure 24 the curves are discontinued at s/D = 0.5 because
for s/D < 0.5 the solution is antisymmetric in the side branch with non-circular cross-
section and not in the main pipe. Therefore, this is a completely different solution.
For s/D � 0.5 the resonant frequencies Re(K/2π) are again determined by the length
of the side branches. The tuned values, marked by the cross symbols in figure 25,
are now approximately at s/D = nλ, n = 1, 2, . . . . The damping Im(K/2π) at these
tuned frequencies is again vanishingly small, suggesting that the modes at these tuned
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Figure 25. x-antisymmetric, z-symmetric tandem side branches of equal length l/D = 2 with
d/D = 0.5: (a) resonant frequencies and (b) radiation damping of the first five AS modes as a
function of distance s/D between the two branches computed with p = 2, dPML = 4, σ0 = 1.

frequencies below the first cutoff frequency (1, 0)D of the main pipe are truly trapped
with a node at x = 0. The modes above the cutoff frequency (1, 0)D have distinct
minima in Im(K/2π) which are not vanishingly small and therefore these modes are
only nearly trapped.

The experiments of Jungowski et al. (1989) have shown that increasing the diameter
d of a T-junction side branch, keeping the diameter D of the main pipe fixed, leads to
a rapid reduction in the pulsation amplitude at resonance due to increased radiation
losses into the main pipe. In the following we vary d/D for a single side branch to
see whether this is corroborated by our resonance computation. The results for the
first five x-symmetric, z-symmetric SS modes are shown in figure 26. The damping
does indeed increase as d/D increases, whereas the resonant frequencies remain fairly
constant. This is true at least for the modes below the first cutoff frequency (1, 0)D of
the main pipe. For the modes above (1, 0)D the damping first increases with increasing
d/D, reaches a maximum and then decreases again.

Summarizing, we can state that the trends experimentally found by Ziada &
Bühlmann (1992), Ziada & Shine (1999) and Jungowski et al. (1989), namely that
the radiation losses are lowest for a symmetric cross junction, and that the radiation
losses of a T-junction increase with increasing d/D, are reproduced by our resonance
computations as long as one considers the resonances whose frequencies are below
the first cutoff frequency of the main pipe. Some of the resonances appear to have
zero radiation losses, i.e. might be truly trapped, and the experimental results seem to
indicate that these resonances indeed control the shear-layer sound source by lock-on.
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Figure 26. Variation of d/D for a single side branch with l/D = 2: (a) resonant frequencies
and (b) radiation damping of the first five SS modes with p = 2, dPML = 4, σ0 = 1(2).

5. Conclusion
Using perfectly matched layer absorbing boundary conditions in the form of the

complex scaling method, acoustic resonances were computed numerically for various
three-dimensional sound-hard structures of finite length in an infinitely long pipe. Such
resonances can be excited by self-sustaining shear-layer oscillations. In particular,
spheres, cylinders, cavities and closed side branches, located on the pipe centreline
or off-centre, were studied. Several resonances with vanishingly small damping could
be identified as truly trapped modes with zero radiation loss. We cannot prove the
existence of a truly trapped mode with our numerical method, but in practice it makes
no difference whether the resonance has exactly zero radiation loss (trapped mode)
or merely very small damping (nearly trapped mode). In this context it is of interest
to note that if a symmetric three-dimensional object moves off the centreline of the
pipe one mode becomes a damped resonance as in two dimensions whereas the other
mode remains nearly trapped or perhaps truly trapped.

Usually trapped modes have a frequency below the first cutoff frequency of the pipe,
but for very special geometries of axisymmetric cavities we also found strong evidence
for the existence of isolated embedded trapped modes above the first cutoff frequency.
Furthermore, our results for closed side branches indicate that the resonant modes
of side branch configurations for which negligible radiation losses were observed
in experiments are in fact truly trapped modes. In applying our method to the
computation of acoustic resonances around a model high-speed train in an infinitely
long double-track tunnel we showed the existence of nearly trapped modes. However,
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their resonant frequency is one order of magnitude too high to enhance the lateral
vibrations of the tail vehicle which have been observed with the Japanese Shinkansen
300 high-speed train.

We are grateful to Joachim Schöberl for making available to us his finite-element
code NGSolve. Furthermore, we appreciated the helpful comments and suggestions
of the three referees.

REFERENCES

Aguilar, J. & Combes, J. M. 1971 A class of analytic perturbations for one-body Schrödinger
Hamiltonians. Commun. Math. Phys. 22, 269–279.

Annino, G., Yashiro, H., Cassettari, M. & Martinelli, M. 2006 Properties of trapped
electromagnetic modes in coupled waveguides. Phys. Rev. B 73, 125308-1–125308-8.

Aslanyan, A., Parnovski, L. & Vassiliev, D. 2000 Complex resonances in acoustic waveguides. Q.
J. Mech. Appl. Maths 53, 429–447.

Baslev, E. & Combes, J. M. 1971 Spectral properties of many body Schrödinger operators with
dilation analytic interactions. Commun. Math. Phys. 22, 280–294.

Bearman, P. W. 1984 Vortex shedding from oscillating bluff bodies. Annu. Rev. Fluid Mech. 16,
195–222.
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